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Abstract-A finite volume numerical scheme is utilized to predict fluid flow and heat transfer characteristics 
in inline tube banks. The effect of equipping the tubes with longitudinal fins on the pressure drop and heat 
transfer is studied. The governing equations for t&rid Row and heat transfer are numerically solved, with the 
assumption of periodic, fully developed flow. The numerical methodology utilizes the stepped boundary 
technique to approximate the tube surface. The tubes are maintained at a constant temperature, and the 
calculations are carried out for laminar flow and for a large range of Reynolds and Prandtl numbers. The 
results for the unfinned tube case are compared with previously published experimental data. The numerical 
results agree well with the experimental measurements. Representative results for the case of the finned tubes 
indicate, surprisingly, a decrease in the heat transfer rate, and small changes in the pressure drop, as a result 
of finning. The decrease in the heat transfer rate probably occurs because the fins are placed in the stagnation 

regions at the front and rear of the tubes, and thus do not increase the heat transfer. 

INTRODUCTION 

THERE have been a number of studies on the pressure 
drop and heat transfer characteristics of tube banks 
in cross flow. This field continues to attract researchers 
because of the importance of this configuration in the 
design of heat exchangers. Most of the earlier studies 
were experimental in nature, and an excellent review 
of such studies is given in Zukauskas El]. In the 
recent past numerical methods have also been used 
to study the heat transfer and lluid Row in tube 
banks [225]. The complex geometry of the flow 
configuration poses an obstacle to the use of numerical 
methods. Different methods have been tried in order 
to surmount this obstacle, such as the conformal 
mapping technique of Thorn and Apelt [2], and the 
hybrid polar--Cartesian grid approach of Launder 
and Massey [3], and Fujii and Fujii [4]. There have 
also been numerical computations using a Cartesian 

grid [S]. 
The objective of the present study is to extend 

the results of previous investigations by numerically 
computing the laminar flow and heat transfer charac- 
teristics of finned tube banks in cross flow. Apart 
from a recent experimental work by Sparrow and 
Kang [6], there does not seem to have been much 
research done on this problem. Sparrow and Kang 
[6] performed heat transfer and pressure drop exper- 
iments for the case of a staggered array tube banks 
equipped with longitudinal fins. They investigated 
geometrical parameters, including the placement of 
fins (at the front of the tube, at the rear, at the front 
and rear), the fin tip shape (blunt or contoured), and 
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the fin thickness. The results were obtained for the 
transition/turbulent regime, with the Reynolds num- 
ber, Re, (based on tube diameter, and the average 
velocity at the minimum cross-sectional area) ranging 
from 1000 to 8000. The results showed that a high 
degree of heat transfer enhancement can be obtained 
by tinning. 

The present contribution investigates the effect of 
finning on the fluid tlow and heat transfer charac- 
teristics of an inline tube bank. In order to do so, 
the governing equations for momentum and energy 
conservation are numerically solved with the assump- 
tion of periodic, fully developed flow. The calculations 
are carried out for the low Reynolds number range 
(1 < Re < 1000). The heat transfer computations are 
carried out for four different values of Prandtl number 
(Pr = 0.7, 5, 10, 20). The mathematical formulation 
of the problem is presented in the next section. 

MATHEMATICAL FORMULATION 

A schematic view of the basic inline tube bundle, 
to be considered in this study, is shown in Fig. la. 
The solution domain, with the assumption of a 
periodic, fully developed flow, is confined to typical 
modules, or cells, shown in Fig. lb. This study also 
considers the case of finned tube banks, in which the 
tubes are equipped with fins at the front and the rear. 
The solution domain for the case of finned tubes is 
shown in Fig. 2. In the case of the unhnned tube 
bundle, the geometry of the solution domain is 
specified by the tube diameter, D, the pitch, S,, in the 
direction parallel to the flow, and the pitch, S,, in the 
direction normal to the flow. When the tubes are 
equipped with fins, two additional parameters are 
required to be specified. These are the fin thickness, 
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NOMENCLATURE 

heat transfer area 
dimensionless pressure drop, pD3/pv2 

specific heat 
diameter of the tube 
friction factor, A~/(2~ VbN) 
inverse of dimensionless heat transfer 
area 
ratio of outlet to inlet wah-to-bulk 
temperature 
heat transfer coefficient 
fluid thermal conductivity 
length of fin 
number of rows in tube bank 
Nusselt number, hD/K 
average value of Nusselt number 
periodic component of dimensionless 
pressure 
periodic component of dimensional 
pressure 
dimensional pressure 
pressure drop across tube bank 
Prandtl number, pCJK 
per cycle, wall heat transfer rate 
Reynolds number, VmD/v 
cylinder pitch in direction normal to 
flow 
cylinder pitch in direction parallel to 
flow 
fin thickness 

T 

TV 
Tb 
u*, ll* 
u, v 

urn 
Vi 

x7 Y 

x, y 

temperature 
wall temperature 
bulk mean temperature 
fluid velocity components 
dimensionless fluid velocity 
components, defined in equation 

(1) 
free-stream velocity 
average velocity at minimum cross- 
sectional area 
space coordinates 
dimensionless space coordinates, 
defined in equation (1). 

Greek symbols 

B pressure drop per unit length 
0 dimensionless temperature, 

(T- T,)/(T, - G) 
i periodic function, defined in 

equation (9) 

!l dynamic viscosity 

PC, viscosity at bulk temperature 

&v viscosity at wall temperature 
V kinematic viscosity 

P density 
a periodic quantity, defined in 

equation (8). 

0 0 0 

(a) (b) 

FIG. 1. (a) Inline tube bank. (b) Solution domain. 
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FIG. 2. Solution domain for finned tube bank. 

t, and the fin length, L. The flow in the tube bundle is 
assumed to be steady, incompressible, fully developed 
and in the laminar flow regime. 

Periodic, fully developed j7ow regime 
The flow through an array of cylinders is analogous, 

in some respects, to the ‘flow in a straight duct of 
constant cross-section. In both these flows, there is 
an entrance region beyond which the flow is fully 
developed. As in the case of ducts, if the entrance 
length is not too long, the flow characteristics of the 
array may be described by the fully developed flow 
alone. In a passage of periodically varying cross- 
section, the fully developed flow is characterized by 
a velocity field that repeats itself at corresponding 
axial stations in successive cycles. Furthermore, in 
such a regime, the pressures of cyclically corres- 
ponding locations decrease linearly in the downstream 
direction. Similarly, a periodic thermally developed 
regime exists for commonly encountered boundary 
conditions such as uniform wall temperature and 
uniform wall heat flux. The periodic, fully developed 
regime in this case is characterized by a cycle average 
heat transfer coefficient which is the same for each 
cycle of the periodic flow channel. The mathematical 
formulation for fully developed flow in flow passages 
of periodically varying cross-section has been 
developed in Patankar et al. [7], and is used here. 
Attention will now be turned to the conservation 
equations which describe the flow and heat transfer 
characteristics for an inline tube bank, with the 
assumption of a periodic, fully developed regime. 

The conservation equations. The governing equa- 
tions describing the flow are the continuity, momen- 
tum and energy equations. Laminar flow and constant 
thermophysical properties are assumed. The following 
dimensionless variables are used: 

X = x/D, Y = y/D, U = u*D/v, V= v*D/v (1) 

p = Blp(~lD)~, B = BD’lpv2, 

0 = (T- T,)/(Tb - T,) (2) 

where u*, v* are the components of fluid velocity, and 
p and v are the density and kinematic viscosity of the 
fluid, respectively. The bulk temperature, Tbr is defined 
as follows 

Tb(x) = [-’ 7’Udyl/[%.12 “dyl. (3) 

The pressure, p* is expressed by p*(x, y) = -/?x + fi 
(x, y), where /I is a constant, and flx,y) behaves in a 
periodic manner. The term px represents the nonper- 
iodic pressure drop that takes place in the flow 
direction. Thus, upon introduction of the dimension- 
less variables, the governing equations have the fol- 
lowing forms 

au/ax + avjay= 0 
ufaulax) + vfaujar) = aZulax2 

+ aw/ay2 - aplax + B 

u(a v/ax) + v(a v/a 4 = a2 v/ax2 
+ aZv/ay2 - aplay 

u(aelax) + v(ae/a Y) 
= (ipr)@2e/ax2 + a2e/ay2) + a 

with 

(4) 

(5) 

(6) 

(7) 

a = $aojax) - ue 1 1 + &[i2 + dlldX] (8) 

and 

1 = Cd& - TJW’lI(& - T,) (9) 

where a and 1 are periodic quantities arising from 
the nature of the boundary conditions. Their values 
are determined as part of the solution process. 

Note that the only parameters here are B, the 
dimensionless pressure drop, and Pr, the Prandtl 
number. The parameter B is related to Re, and is 
provided as an input for the computation. Note also 
that equations (5)-(7) retain the streamwise second 
derivatives a2UIdX2, a2 Vf//dX’ and d2B/aX2 in recog- 
nition of the fact that large local values of these 
quantities may occur in the periodic fully developed 
flows. 

To complete the discussion of the flow problem, it 
remains to discuss the boundary conditions. These 
are 

U=v=e=o (10) 

on the cylinder and fin surface, and 

aulav= v= irelay= 0 (11) 
on the symmetry boundaries. In addition, periodic 
boundary conditions are imposed on the inflow and 
outflow boundary segments. They take the form 

U(Y)lx=s,,D = U(Y)l,=, (12) 

V(Y)lx=SI,D = V’oIx=, (13) 

e(~lx=s,,D = B(Y)I~=~. (14) 

The parameters required as input for the compu- 
tation are B, for the flow equations, and Pr for the 
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energy equation. A specification of the parameter B 
is equivalent to specifying the Reynolds number 
for the flow. In addition to these, the parameters 
describing the geometry, i.e. SJD, and S,/D, t/D and 
L/D, are required as inputs prior to the computation. 

In order to test the validity of the numerical 
methodology, calculations for the flow and heat 
transfer are carried out for a special case (case I), for 
which experimental results exist. The computations 
for the pressure drop and heat transfer are carried 
out for an unfmned inhne tube bank corresponding 
to model No. 2 in the experimental investigations of 
Bergelin et al. [S, 91. The geometry parameters in this 
case have the following values 

S,/D = 1.25, S,JD = 1.25. (15) 

The values of B are chosen so that the Reynolds 
number lies in the range 1 < Re < 1000. The heat 
transfer calculations are performed for Prandtl num- 
bers of 0.7, 5, 10 and 20. 

Additional calculations are performed to study the 
effect of finning. Two sets of calculations are carried 
out, the first being for an inline array without fins 
(case2), and the second for an inline tube bank 
equipped with fins (case 3). The geometry parameters 
for these calculations are 

S,/D = 2.4, S,JD = 1.5, t/D = 0.2, 

L/D = 0.5. (16) 

The values of B are again chosen so that the Reynolds 
number of the Row lies in the range 1 < Re < 1000. 
The heat transfer calculations are carried out for 
Prandtl numbers varying from 0.7 to 20.0. 

Reynolds number, pressure drop, and Nusselt number 

Attention will now be focused on the calculation 
of the Reynolds number, which is defined as follows 

Re = V,D/v (17) 

where V, is the average velocity at the minimum 
cross-sectional area. For the inline tube bank the 
Reynolds number may be calculated as follows 

2 
S.PD 

Re = [(SJD) - 1] o s Ud Y. (18) 

In much of the literature [3,8,9], the pressure drop 
is expressed in terms of the dimensionless friction 
factor, f, defined as 

f = AP/(~P~‘,?$‘) (19) 

where Ap is the pressure across the tube bank, and 
N is the number of rows in the tube bank. For the 
flow geometry under consideration, the friction factor 
can be written in the form 

f’= ().5/3(S,jD), Kc’. (20) 

Finally, the cycle-average Nusselt number is 
obtained by 

NM = hD/k (21) 

where I< is the fluid thermal conductivity, and h is 
the heat transfer coe@icient, defined as 

h = Q/UT, - r,) (22) 

where Q is the per cycle rate of heat transfer from the 
walls to the fluid, and A, is the per-cycle heat transfer 
area, which is equal to nD/2 for the unfinned tube 
bank, and is equal to (xD/2 I- 2.L) for the finned tube 
bank. The quantity (7;, - T,) is the average wall-to- 
bulk temperature difference. Both the log-mean and 
the arithmetic-mean temperature differences are used 
to evaluate (T, - Tb). Also, the effect of the inclusion 
of axial heat conduction in the per-cycle wall heat 
transfer Q is investigated. Four different expressions 
are derived for the calculation of the Nusselt number. 
Nu( 1) and Nu(3) are obtained by assuming arithmetic- 
mean temperature difference, with and without 
inclusion of axial conduction in the heat transfer 
rate Q, respectively. Nu(2) and Nu(4) refer to the 
corresponding expressions obtained when the log- 
mean temperature difference is used. The four 
expressions used for the calculation of the Nusselt 
number are as follows: 

Nu(1) = --g[(G - l)/(G f l)](S,/D - l)Re-Pr 

(23) 

Nu(2) = g ln(G)(S~/D - l)Re. Prj2 

Nu(3) = -gZ[(G - l)/(G + 1)] 

(24) 

(25) 

Nu(4) = -gln(G){Re.Pr(S,/D - 1)/2 

s 

s,/zn 
- (Jo + rW/&&,,dY (26) 

0 

where G is the ratio of outlet to inlet wall-to-bulk 
temperature (T, - Tb)x =s~,~/(T~ - TblxzO, and g is 
the inverse of the dimensionless heat transfer area, 
which is equal to 2/a for the unfinned tuhz bank, and 

is equal to [ 1 ‘(n!2 -t ZL:D1] for the limed tube bank. 

Interested readers may refer to ref. [IO] for the 
derivation of the expressions for Nu( I) and Nu(3). 

lt should be noted that the boundary stepped 
method makes it difficult to obtain local heat transfer 
coefficients. In this paper, the heat transfer coefficients 
were obtained by calculating the influx of heat into, 
and the efllux out of, the solution domain. The 
difference between the two quantities yields the 
amount of heat transferred, Q, from the walls to the 
fluid. 
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FIG. 3. Comparison of numerical results with experimental data of Bergelin et al. [8,9]. 
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Computational details 
The governing flow equations, along with the 

boundary conditions, are solved using the finite- 
volume differencing methods developed in Patankar 
[ll]. In this method, the flow equations are first 
discretized by integrating them over finite control 
volumes. The discretization procedure is based on the 
power-law scheme of Patankar [12]. The grid layout 
in this method uses staggered nodal locations for the 
velocity, while the pressure is computed at the main 
nodal locations. The discretized equations are solved 
by an iterative process. The pressure field is computed 
indirectly via the continuity equation, using the SIM- 
PLER algorithm [l I]. For the solution of the differ- 
ence equations, a line-by-line method is used, which 
is a combination of cyclic tridiagonal matrix algorithm 
(TDMA) and Gauss-Siedel. The discretization pro- 
cedure and solution methodology are tied in to the 
well-documented practices of Patankar [I 1 f. Further 
details about the solution methodology may be 
obtained from Rao [ 133, wherein a system of convec- 
tion-diffusion equations of a form similar to equations 
(4)-(7) have been numerically solved. 

It should be noted that the presence of curved 
boundaries increases the complexity of the solution 
procedure. In this study, the cylinder surface is 
approximated by a series of steps, and the actual 
computation is carried out in Cartesian coordinates. 
A grid study showed that the solutions for the flow 

equations are reasonably grid independent, even for 
coarse computation grids. The solution for the energy 
equation is, however, very sensitive to the grid size 
used. It was thus decided to select the computation 
grid size on the basis of obtaining grid independent 
results for the energy equation alone. The grid depen- 
dence tests showed that, for the grid considered, and 
over the range 1 < Re x 1000, the heat transfer results 
were accurate for a Prandtl number of 0.7. At higher 
Prandtl numbers, the accuracy of the results decreased 
at higher Reynolds numbers (Re < 500). This is 
because a very thin thermal boundary layer exists at 
higher values of (Re.Pr), thus requiring more grid 
points to be placed close to the cylinder surface in 
order to obtain accurate results. In practice, the 
amount of processor time required for the calculations 
places restrictions on the maximum size of the compu- 
tation grid that can be used. 

The final computations were carried out for a grid 
containing 56 x 31 nodal points. About 300-500 
iterations were necessary to obtain converged sol- 
utions for the velocity field, while the temperature 
field required only 75-150 iterations. The processing 
time required for the flow field computation ranged 
between 120 and 2OOmin, on a NAS7000 mainframe 
computer using an IBM OS/MVS operating system. 
The solution of the energy equation required 3--6 min 
of processor time. The results from the numerical 
computations are presented in the next section. 
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FIG. 4. Friction factor for finned and unfinned tube banks. 

Table 1. Calculated values of friction factor and Nusselt number for the 
unfinned inline arrav tube bank 

B Re f PT Nu(1) Nu(2) Nu(3) Nu(4) 

40 2.7 6.584 20.0 5.348 5.531 5.341 5.524 

280 18.23 1.011 .5.0 5.586 5.657 5.566 5.636 
10.0 5.968 5.989 5.957 5.978 
20.0 6.130 6.131 6.724 6.132 

1500 76.18 0.310 0.7 5.260 5.438 5.240 5.418 
5.0 6.929 6.931 6.923 6.931 

10.0 8.209 8.212 8.205 8.208 
20.0 10.79 10.79 10.79 10.79 

3500 151.8 0.182 0.7 5.869 5.929 5.862 5.922 
5.0 8.173 8.176 8.171 8.174 

10.0 10.05 10.05 10.05 10.05 
20.0 13.69 13.69 13.69 13.69 

14,000 486.8 0.071 0.7 7.077 7.087 7.075 7.085 
5.0 10.51 10.51 10.51 10.51 

10.0 13.64 13.64 13.64 13.64 
20.0 19.58 19.58 19.58 19.58 

30,000 937.7 0.041 0.7 7.728 1.131 7.727 7.730 
5.0 11.86 11.87 11.86 11.87 

10.0 15.83 15.83 15.83 15.83 
20.0 23.29 23.29 23.29 23.29 

Nuav 
5.436 

5.611 
5.973 
6.731 

5.339 
6.930 
8.209 

10.79 

5.896 
8.174 

10.05 
13.69 

7.08 1 
10.51 
13.64 
19.58 

7.729 
11.87 
15.83 
23.29 

RESULTS AND DISCUSSIONS described by the geometry parameters in equation 
(15). Four different sets of data are plotted for the 

Representative results for the test case (case 1) quantity [(Nu/(RePr”3)], corresponding to Prandtl 
shows good agreement with the experimental results numbers of 0.7, 5, 10 and 20. Also plotted are the 
of Bergelin et al. [8,9]. Figure 3 shows a plot of the 
friction factor, f, and the quantity [(Nu/(Re Pr1/3)] vs 

experimental results of Bergelin et al. [8,9], who 
f ound that multiplying the quantity [(Nu/RePr’/3)] 

the Reynolds number for the inline tube bank by (pw/pb)o.14 accounted for the effects of Prandtl 
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c 

Table 2. Calculated values of friction factor and Nusselt number* for the 
finned inline array tube bank 

B Re f Pr Nu(1) Nu(2) Nu(3) Nu(4) Nu,, 

40 2.62 7.003 20.0 

280 17.86 1.053 0.7 
5.0 

10.0 
20.0 

3.736 3.920 3.760 3.943 

2.167 3.471 2.421 3.878 
3.887 3.953 3.887 3.953 
4.082 4.101 4.079 4.098 
4.479 4.485 4.477 4.483 

1500 76.95 0.304 0.7 3.593 3.744 
5.0 4.396 4.401 

10.0 5.189 5.191 
20.0 6.910 6.910 

3500 152.7 0.180 0.7 
5.0 

10.0 
20.0 

14,000 485.7 0.071 0.7 
5.0 

10.0 
20.0 

3.810 3.854 
5.083 5.085 
6.324 6.324 
8.768 8.768 

4.430 4.436 
6.465 6.465 
8.334 8.334 

11.95 11.95 

30,000 935.3 0.041 0.7 4.822 4.824 
5.0 7.234 7.234 

10.0 9.587 9.587 

3.581 3.732 
4.389 4.394 
5.184 5.186 
6.910 6.910 

3.797 3.841 
5.080 5.082 
6.324 6.324 
8.768 8.768 

4.428 4.435 
6.465 6.465 
8.334 8.334 

11.95 11.95 

4.821 4.823 
7.234 7.234 
9.587 9.587 

3.840 

2.985 
3.920 
4.090 
4.48 1 
3.662 
4.395 
5.188 
6.910 

3.826 
5.082 
6.324 
8.768 

4.432 
6.465 
8.334 

11.95 

4.823 
7.234 
9.587 

20.0 14.11 14.11 14.11 14.11 14.11 

* Based on actual area of heat transfer. 
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FIG. 5. Average Nusselt numbers for finned and unfinned tube banks. 

number, and temperature dependence of viscosity, on 
their data. It is with this modified form that the 
comparison in Fig. 3 is made. As can be seen from 
the figure, the results for laminar flow agree very well 
for Re up to 1000. This is surprising since transition 
to turbulence is expected to occur at much lower 
values of Re. These results support the conclusion 
reached by Launder and Massey [3], who observed 
that for Re < 1000, “the effects of turbulence (or of 

some more ordered unsteadiness), if present, is not 
important”. 

It is reasonable to assume that the numerical 
methodology can yield reasonable results for the case 
of flow and heat transfer in finned tube banks. This 
is because the presence of fins would tend to act 
as ‘flow straighteners’ and would also damp out 
turbulence and vortex shedding. It is interesting to 
note from ref. [63 that the increase in heat transfer in 
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FIG. 6. Streamline plots for finned and unfinned tube banks. 

finned tube banks is proportional to the increase in 
heat transfer area. It can be thus reasoned that finning, 
at least in staggered tube banks, does not lead to an 
increase in turbulence-related heat transfer. 

The effect of finning, on the friction factor for the 
case of the inline tube bank with the geometry 
specified in equation (16), is seen in Fig. 4. This is a 
plot of the friction factor vs the Reynolds number, 
for the finned and unfinned tube banks. The calculated 
results are also listed in Tables 1 and 2, for the 
unfinned and finned case, respectively. Also tabulated 
are the Nusselt number results obtained from equa- 
tions (22)-(25), for different values of Prandtl numbers. 
A comparison of the heat transfer rates for the finned 
and unfinned tube banks is graphically presented in 
Fig. 5. Here the average Nusselt number, Nu,, is 
plotted against the Reynolds number, for different 

values of Pr. The average Wusselt number is the 
arithmetic mean of Nu(l), Nu(2), Nu(3) and Nu(4). 
The closeness between the friction factor results for 
the finned and unfinned tube banks [see Fig. 41. 
suggest that the flow, in both cases, is similar. This is 
clearly seen in Fig. 6, which shows the streamline 

plots for the finned and unfinned cases at different 
values of the parameter B. It is seen that the fins are 
in the stagnation zones in the front and rear of each 
tube, and thus effect the flow in these regions only. 
The major part of the flow does not seem to feel the 
effect of the fins being present. The heat transfer 
results in Fig. 5 show that the Nusselt number 
decreases as a result of finning. This is probably again 
due to the fact that the fins are in the stagnation 
regions, and thus the increase in heat transfer area 
cannot be effectively used. Figure 7 shows a set of 
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B= 14000 

3 =3OOOOO 

FIG. 7. Isotherm plots For finned and unfinned tube banks. 

Table 3. Calculated values of Nusselt number* for the finned inline 
array tube bank 

I3 Re Pr Nu(1) Nu(2) Nu(3) Nu(4) Nu., 

40 2.62 20.0 6.115 6.415 6.153 6.454 6.284 

280 17.86 0.7 3.547 5.682 
5.0 6.362 6.471 

10.0 6.68 1 6.712 
20.0 7.330 7.340 

1500 16.95 0.1 
5.0 

10.0 
20.0 

3500 152.7 0.7 
5.0 

10.0 
20.0 

14,000 485.7 0.7 
5.0 

10.0 
20.0 

3o,oG+I 935.3 0.7 
5.0 

10.0 
20.0 

5.880 
7.194 
8.492 

11.31 

6.128 
7.202 

6.236 
8.319 

10.35 
14.35 

7.251 
10.58 
13.64 
19.56 

7.892 
11.84 
15.69 
23.09 

8.495 
11.31 

6.307 
8.322 

10.35 
14.35 

7.261 
10.58 
13.64 
19.56 

7.895 
11.84 
15.69 
23.09 

3.962 6.347 
6.361 6.470 
6.676 6.707 
7.327 1.337 

5.861 6.108 
7.183 7.191 
8.485 8.488 

11.31 11.31 

6.215 6.286 
8.314 8.318 

10.35 10.35 
14.35 14.35 

7.247 7.258 
10.58 10.58 
13.64 13.64 
19.56 19.56 

7.890 7.894 
11.84 11.84 
15.69 15.69 
23.09 23.09 

4.885 
6.416 
6.694 
7.333 

5.994 
7.193 
8.490 

11.31 

6.261 
8.318 

10.35 
14.35 

7.254 
10.58 
13.64 
19.56 

7.893 
11.84 
15.69 
23.09 

* Based on area of unfinned tube. 

isotherm plots for the finned and un~nned tube banks tube bank. A comparison of Tables 1 and 3 shows 
for a Prandtl number of 0.7, and at different values that the heat transfer rate increases only for low 
of E. Again it is seen that the presence of the fins values of Prandtl number (Pr = 0.7). At higher values 
changes the temperature distribution only in the of Pr there is very little change in the heat transfer 
stagnation regions. Table 3 presents the calculated rate. 
values of the Nusselt number for the finned tube In summary, it appears that longitudinal finning, 
bank, based on the heat transfer area of an unfinned in the case of inline tube banks, does not lead to any 
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significant increase in actual heat transfer. This is 
because the fins are in the midst of stagnation regions, 
and hence do not increase the heat transfer, despite 
the fact that they present a larger surface area over 
which heat transfer may occur. This is in contrast to 
the case of staggered tube banks [6], for which finning 
substantially increase the heat transfer. 
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CALCUL NUMERIQUE DE L’ECOULEMENT ET DU TRANSFERT THERMIQUE 
DANS DES RANGEES DE TUBES AILETES OU NON 

Rbum&Un schema numkrique ii volume fini est utilisk pour prkdire les caract&istiques d’tcoulement et 
de transfert thermique dans des banes de tubes align&s. On ktudie I’effet des ailettes longitudinales sur les 
tubes. Les kquations du mouvement et du transfert de chaleur sont numtriquement rtsolues, avec I’hy- 
pothkse d’un tcoulement pkriodique pleinement divelopp& La m&hodologie numtrique utilise la technique 
de la front&e tchelonnie pour approcher la surface du tube. Les tubes sont maintenus a tempkrature 
constante et les calculs sont effect&s pour I%coulement laminaire et pour un grand domaine de nombre 
de Reynolds et de Prandtl. Les rtsultats pour les tubes lisses sont cornpar& avec les don&es expirimentales 
publites. Les rtsultats numeriques s’accordent bien avec les mesures. Pour le cas des tubes ailetts, les 
rtsultats indiquent une diminution surprenante du transfert de chaleur et de faibles changements de la 
perte de charge rtsultant de I’ailetage. La d&croissance du transfert de chaleur est probablement due au 
fait que les ailettes sont placCes dans les rkgions d’arr&t devant et derriire les tubes et que ceci n’a pas I’effet 

d’augmenter le transfert. 

NUMERISCHE BERECHNUNG VON STROMUNG UND WiiRMEtiBERGANG IN 
BERIPPTEN UND UNBERIPPTEN ROHRBtiNDELN 

Zusammenfassung-Es wird ein numerisches Verfahren verwendet, urn Striimung und WLrmelbergang in 
einem fluchtenden Rohrbiindel zu berechnen. Der Einflull einer tingsberippung auf den Druckabfall und 
den WCrmeiibergang wird untersucht. Die maDgeblichen Gleichungen fiir Striimung und Wgrmeiibergang 
werden numerisch gel&t. wobei eine periodisch voll-entwickelte Striimung angenommen wird. Dabei wird 
das numerische Verfahren der gestuften Berandung angewandt. urn die Rohroberfliche zu approximieren. 
Die Rohre werden auf konstanter Temperatur gehalten. Die Berechnungen erfolgen fiir laminare Striimung 
in einem weiten Bereich der Reynolds- und Prandtl-Zahl. Die Ergebnisse fiir unberippte Rohre werden mit 
jiingst veriiffentlichten experimentellen Daten verglichen. Die numerischen Berechnungen stimmen gut mit 
diesen Daten iiberein. ReprCsentative Ergebnisse fiir berippte Rohre zeigen iiberraschenderweise eine 
Verminderung des Warmeiiberganges und eine nur geringe ;inderung des Druckabfalles als Folge der 
Berippung. Das Abfallen der Wlrmeiibergangs-Koeffizienten wird wahrscheinlich dadurch hervorgerufen. 
dal3 die Rippen im vorderen und hinteren Staubereich abgebracht waren. wodurch sich keine Erhiihung 

des WHrmeiibergangs-Koeffizienten ergeben kann. 

~MCJIEHHbI~ PACgET TE’JEHMII M TEl-IJIOOE;MEHA B OPEEPEHHbIX I4 
HEOPE6PEHHbIX I-IYYKAX TPYE 

hno’raqm-c noMouwo qecnewiofi cxehm tcoHe%iofo o6aeMa npoeenen pacgeT xapaKTeprtcT&%K 
Te7em.m xoin~ocr~ R TennonepeHoca a ~0pHaop~brx nyqKaK Tpy6. HccnenonaHo BnHamie npononbHor0 
ope6peaan ~py6 Ha nepenan nasneHmi TennonepeHoc. YecneHno pemeribr ocriomrbre ypaeHemin nnn 
noToxa ~~~~KOCTH n TennonepeHoca a nonymemiH nepHoneqecrror0, nonHocTbro passeTor0 TeqeHAa. 
lTp~ wcneHHoM pememiu ucnonb30aanca MeTon cTyneaqaToir rparmubr ann annpoKceMauHu noeepx- 
HOCTW ~py6. TeMnepaTypa ~py6 nonnepmAeanacb nocToniiHol, w pacqeTbr nbmontianncb n.nn nabrseap- 
Hero pe%iMa Teqerina a 6onbmoM nAana3oHe 3Haqemifi wCen Pekionbnca B npaHnTnn. npoeeneHo 
CpaBHeHIle pe3ynbTaTOB paC'ieTOB Mn HeOpe6peHHOfi Tpy6bI paHee OIly6JIHKOBaHHbIMH 3KCIlepkiMeHTa- 

,IbHblMA naHHbIMB H OTMe'(eH0 AX XOpOlllee COBnaneHHe. COBeplIleHHO HeOXCWlaHHbIM pe3yJlbTaTOM 
aaanasa naHHbIx, nonyqeHHbrx mn ope6peHHblX Tpy6, oxa3anocb cmixcemfe nnoTHocTn Tennoaoro 
noToKa A He6onbmoe n3MeHemie nepenana Haanemia 38 CqeT ope6peaen. BeponTHo, yMeHbuIeHse nnoT- 

HOCTH TennoBoro noToKa Bbl3BaHo MecTononomemeM pe6ep a 30riax -ropMoxcemia noToKa Ha nepenHeti 
II santrefi cTeHKaK ~py6, B pe3ynbTaTe 4ero He npoecxoneT yseneremin B mrTencm3HocTA TennooBhlena. 


