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Abstract—A finite volume numerical scheme is utilized to predict fluid flow and heat transfer characteristics
in inline tube banks. The effect of equipping the tubes with longitudinal fins on the pressure drop and heat
transfer is studied. The governing equations for fluid flow and heat transfer are numerically solved, with the
assumption of periodic, fully developed flow. The numerical methodology utilizes the stepped boundary
technique to approximate the tube surface. The tubes are maintained at a constant temperature, and the
calculations are carried out for laminar flow and for a large range of Reynolds and Prandtl numbers. The
results for the unfinned tube case are compared with previously published experimental data. The numerical
results agree well with the experimental measurements. Representative results for the case of the finned tubes
indicate, surprisingly, a decrease in the heat transfer rate, and small changes in the pressure drop, as a result
of finning. The decrease in the heat transfer rate probably occurs because the fins are placed in the stagnation
regions at the front and rear of the tubes, and thus do not increase the heat transfer.

INTRODUCTION

THERE have been a number of studies on the pressure
drop and heat transfer characteristics of tube banks
in cross flow. This field continues to attract researchers
because of the importance of this configuration in the
design of heat exchangers. Most of the earlier studies
were experimental in nature, and an excellent review
of such studies is given in Zukauskas [1]. In the
recent past numerical methods have also been used
to study the heat transfer and fluid flow in tube
banks [2-5]. The complex geometry of the flow
configuration poses an obstacle to the use of numerical
methods. Different methods have been tried in order
to surmount this obstacle, such as the conformal
mapping technique of Thom and Apelt [2], and the
hybrid polar-Cartesian grid approach of Launder
and Massey [3], and Fujit and Fujii [4]. There have
also been numerical computations using a Cartesian
grid [5].

The objective of the present study is to extend
the results of previous investigations by numerically
computing the laminar flow and heat transfer charac-
teristics of finned tube banks in cross flow. Apart
from a recent experimental work by Sparrow and
Kang [6], there does not seem to have been much
research done on this problem. Sparrow and Kang
[6] performed heat transfer and pressure drop exper-
iments for the case of a staggered array tube banks
equipped with longitudinal fins. They investigated
geometrical parameters, including the placement of
fins (at the front of the tube, at the rear, at the front
and rear), the fin tip shape (blunt or contoured), and
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the fin thickness. The results were obtained for the
transition/turbulent regime, with the Reynolds num-
ber, Re, (based on tube diameter, and the average
velocity at the minimum cross-sectional area) ranging
from 1000 to 8000. The results showed that a high
degree of heat transfer enhancement can be obtained
by finning.

The present contribution investigates the effect of
finning on the fluid flow and heat transfer charac-
teristics of an inline tube bank. In order to do so,
the governing equations for momentum and energy
conservation are numerically solved with the assump-
tion of periodic, fully developed flow. The calculations
are carried out for the low Reynolds number range
(1 < Re < 1000). The heat transfer computations are
carried out for four different values of Prandtl number
(Pr=0.7, 5, 10, 20). The mathematical formulation
of the problem is presented in the next section.

MATHEMATICAL FORMULATION

A schematic view of the basic inline tube bundle,
to be considered in this study, is shown in Fig. la.
The solution domain, with the assumption of a
periodic, fully developed flow, is confined to typical
modules, or cells, shown in Fig. 1b. This study also
considers the case of finned tube banks, in which the
tubes are equipped with fins at the front and the rear.
The solution domain for the case of finned tubes is
shown in Fig. 2. In the case of the unfinned tube
bundle, the geometry of the solution domain is
specified by the tube diameter, D, the pitch, S, in the
direction parallel to the flow, and the pitch, S, in the
direction normal to the flow. When the tubes are
equipped with fins, two additional parameters are
required to be specified. These are the fin thickness,
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NOMENCLATURE
heat transfer area T
dimensionless pressure drop, fD3/pv? T,
specific heat T,
diameter of the tube u*, v*
friction factor, Ap/(2p ViN) u, v
inverse of dimensionless heat transfer
area
ratio of outlet to inlet wall-to-bulk U,
temperature Va
heat transfer coefficient
fluid thermal conductivity X,y
length of fin X, Y

number of rows in tube bank
Nusselt number, hD/K

average value of Nusselt number
periodic component of dimensionless
pressure

periodic component of dimensional
pressure

dimensional pressure

pressure drop across tube bank
Prandtl number, uC,/K

per cycle, wall heat transfer rate
Reynolds number, V,,D/v

cylinder pitch in direction normal to
flow

cylinder pitch in direction parallel to
flow

fin thickness

temperature

wall temperature

bulk mean temperature

fluid velocity components
dimensionless fluid velocity
components, defined in equation
8]

free-stream velocity

average velocity at minimum cross-
sectional area

space coordinates

dimensionless space coordinates,
defined in equation (1).

Greek symbols

B
0

pressure drop per unit length
dimensionless temperature,
(T—TH)T, - T)

periodic function, defined in
equation (9)

dynamic viscosity

viscosity at bulk temperature
viscosity at wall temperature
kinematic viscosity

density

periodic quantity, defined in
equation (8).
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FiG. 1. (a) Inline tube bank. (b) Solution domain.
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F1G. 2. Solution domain for finned tube bank.

t, and the fin length, L. The flow in the tube bundle is
assumed to be steady, incompressible, fully developed
and in the laminar flow regime.

Periodic, fully developed flow regime

The flow through an array of cylinders is analogous,
in some respects, to the flow in a straight duct of
constant cross-section. In both these flows, there is
an entrance region beyond which the flow is fully
developed. As in the case of ducts, if the entrance
length is not too long, the flow characteristics of the
array may be described by the fully developed flow
alone. In a passage of periodically varying cross-
section, the fully developed flow is characterized by
a velocity field that repeats itself at corresponding
axial stations in successive cycles. Furthermore, in
such a regime, the pressures of cyclically corres-
ponding locations decrease linearly in the downstream
direction. Similarly, a periodic thermally developed
regime exists for commonly encountered boundary
conditions such as uniform wall temperature and
uniform wall heat flux. The periodic, fully developed
regime in this case is characterized by a cycle average
heat transfer coefficient which is the same for each
cycle of the periodic flow channel. The mathematical
formulation for fully developed flow in flow passages
of periodically varying cross-section has been
developed in Patankar et al. [7], and is used here.
Attention will now be turned to the conservation
equations which describe the flow and heat transfer
characteristics for an inline tube bank, with the
assumption of a periodic, fully developed regime.

The conservation equations. The governing equa-
tions describing the flow are the continuity, momen-
tum and energy equations. Laminar flow and constant
thermophysical properties are assumed. The following
dimensionless variables are used:

X =x/D, Y=y/D, U=u*D/v, V=0v*D/v (1)
p = b/p(v/D)’, B = BD’/pv?,
0=(T—-THNT - T, v

where u*, v* are the components of fluid velocity, and
p and v are the density and kinematic viscosity of the
fluid, respectively. The bulk temperature, T,, is defined
as follows
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Sa/2 S,/2
Ty(x) = [f TUdyl/l:j Udy:|.. (3)
0 o

The pressure, p* is expressed by p*(x,y) = —fx + p
(x, y), where B is a constant, and p(x, y) behaves in a
periodic manner. The term Bx represents the nonper-
iodic pressure drop that takes place in the flow
direction. Thus, upon introduction of the dimension-
less variables, the governing equations have the fol-
lowing forms

oU/oX + 0V/eY =0 4

UU/3X) + V(8U/3Y) = 0*UJaX?
+32U/OY? —p/oX + B (5)

U(0V/8X) + V(dV/aY) = 8*V/oX?
+ 8*V/oY? — 0p/dY  (6)
U(96/6X) + V(06/0Y)
= (1/Pr)(6%6/0X? + 8%0/0Y) +a  (7)

with
o =| Z@osex) - vo |1+ Lri2 + diaxy ®
Pr Pr

and
A=[dT, - TYdXIT, - T,) )]

where ¢ and A are periodic quantities arising from
the nature of the boundary conditions. Their values
are determined as part of the solution process.

Note that the only parameters here are B, the
dimensionless pressure drop, and Pr, the Prandtl
number. The parameter B is related to Re, and is
provided as an input for the computation. Note also
that equations (5)—(7) retain the streamwise second
derivatives 82U /6X?, 0*V/aX? and 8%6/0X? in recog-
nition of the fact that large local values of these
quantities may occur in the periodic fully developed
flows.

To complete the discussion of the flow problem, it
remains to discuss the boundary conditions. These
are

U=sV=0=0 (10)
on the cylinder and fin surface, and

dU/Y =V =00/0Y =0 (11)

on the symmetry boundaries. In addition, periodic
boundary conditions are imposed on the inflow and
outflow boundary segments. They take the form

U(Y)|x=sv/n = U(Y)|x=o (12)
V(Y)|x=sp/o = V(Y)Ix=o (13)
Y)lx=s,0 = HVlx-o- (14)

The parameters required as input for the compu-
tation are B, for the flow equations, and Pr for the
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energy equation. A specification of the parameter B
is equivalent to specifying the Reynolds number
for the flow. In addition to these, the parameters
describing the geometry, i.e. S,/D, and §,/D, t/D and
L/D, are required as inputs prior to the computation.

In order to test the validity of the numerical
methodology, calculations for the flow and heat
transfer are carried out for a special case {case 1), for
which experimental results exist. The computations
for the pressure drop and heat transfer are carried
out for an unfinned inline tube bank corresponding
to model No. 2 in the experimental investigations of
Bergelin et al. [8,9]. The geometry parameters in this
case have the following values

S,/D =125, S./D = 1.25. (1%
The values of B are chosen so that the Reynolds
number lies in the range 1 < Re < 1000. The heat
transfer calculations are performed for Prandtl num-
bers of 0.7, 5, 10 and 20.

Additional calculations are performed to study the
effect of finning. Two sets of calculations are carried
out, the first being for an inline array without fins
(case2), and the second for an inline tube bank
equipped with fins (case 3). The geometry parameters
for these calculations are

S,/D =24,
L/D =05,

S./D = 1.5, t/D = 0.2,

(16)

The values of B are again chosen so that the Reynolds
number of the flow lies in the range 1 < Re < 1000.
The heat transfer calculations are carried out for
Prandtl numbers varying from 0.7 to 20.0.

Reynolds number, pressure drop, and Nusselt number
Attention will now be focused on the calculation
of the Reynolds number, which is defined as follows
Re = V,.D/v (a7

where V,, is the average velocity at the minimum

cross-sectional area. For the inline tube bank the
Reynolds number may be calculated as follows

2 Sa/2D
Re = ce D T 13£ Udy. (18)

In much of the literature [3, 8, 97, the pressure drop
is expressed in terms of the dimensionless friction
factor, f, defined as

S = Ap/2pViN) (19)
where Ap is the pressure across the tube bank, and
N is the number of rows in the tube bank. For the
flow geometry under consideration, the friction factor
can be written in the form

M. FaGgHrt and N. Rao

"= 0.5B(S,/D)/Re”. 0

Finally, Nusselt number is

obtained by

the cycle-average

Nu = hD/k 2n

where K is the fluid thermal conductivity, and h is
the heat transfer coeflicient, defined as

where @ is the per cycle rate of heat transfer from the
walls to the fluid, and A,, is the per-cycle heat transfer
area, which is equal to nD/2 for the unfinned tube
bank, and is equal to (zD/2 + 2L) for the finned tube
bank. The quantity (T, ~ T;) is the average wall-to-
bulk temperature difference. Both the log-mean and
the arithmetic-mean temperature differences are used
to evaluate (T, — Tp). Also, the effect of the inclusion
of axial heat conduction in the per-cycle wall heat
transfer @ is investigated. Four different expressions
are derived for the calculation of the Nusselt number.
Nu{1)and Nu(3) are obtained by assuming arithmetic-
mean temperature difference, with and without
inclusion of axial conduction in the heat transfer
rate Q, respectively. Nu(2) and Nu(4) refer to the
corresponding expressions obtained when the log-
mean temperature difference is used. The four
expressions used for the calculation of the Nusselt
number are as follows:

Nu(1) = —g[(G — DAG + D)(S,/D — 1)Re- Pr
(23)

Nu(2) = gln(G)YS,/D — 1)Re- Prj2 (24)

Nu(3) = —g2[(G — DAG + 1)]

Saf2D o0
X {Re‘t')"(Sn/D~ I)/Z_Jv (/1()_{_55(—))(:0(“’}

o
(25)

Nu(d) = —gIn(G){Re- PrS,/D — 1)/2

Sa/ 2D
- f (A0 + 60/6X)xiodY} (26)

0

where G is the ratio of outlet to inlet wall-to-bulk
temperature (T, — To)x =5 /T, — Tlx—o- and g is
the inverse of the dimensionless heat transfer area,
which is equal to 2/x for the unfinned tube bank, and
is equal to [14=/2 + 2L/D)] for the finned tube bank.
Interested readers may refer to ref [10] for the
derivation of the expressions for Nu(1) and Nu(3).

It should be noted that the boundary stepped
method makes it difficult to obtain local heat transfer
coefficients. In this paper, the heat transfer coefficients
were obtained by calculating the influx of heat into,
and the efflux out of, the solution domain. The
difference between the two quantities yields the
amount of heat transferred, Q, from the walls to the
fluid.
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F1G. 3. Comparison of numerical results with experimental data of Bergelin et al. [8,9].

Computational details

The governing flow equations, along with the
boundary conditions, are solved using the finite-
volume differencing methods developed in Patankar
[11]. In this method, the flow equations are first
discretized by integrating them over finite control
volumes. The discretization procedure is based on the
power-law scheme of Patankar [12]. The grid layout
in this method uses staggered nodal locations for the
velocity, while the pressure is computed at the main
nodal locations. The discretized equations are solved
by an iterative process. The pressure field is computed
indirectly via the continuity equation, using the SIM-
PLER algorithm [11]. For the solution of the differ-
ence equations, a line-by-line method is used, which
is a combination of cyclic tridiagonal matrix algorithm
(TDMA)} and Gauss-Siedel. The discretization pro-
cedure and solution methodology are tied in to the
well-documented practices of Patankar [11]. Further
details about the solution methodology may be
obtained from Rao [13], wherein a system of convec-
tion—diffusion equations of a form similar to equations
(4)—(7) have been numerically solved.

It should be noted that the presence of curved
boundaries increases the complexity of the solution
procedure. In this study, the cylinder surface is
approximated by a series of steps, and the actual
computation is carried out in Cartesian coordinates.
A grid study showed that the solutions for the flow

equations are reasonably grid independent, even for
coarse computation grids. The solution for the energy
equation is, however, very sensitive to the grid size
used. It was thus decided to select the computation
grid size on the basis of obtaining grid independent
results for the energy equation alone. The grid depen-
dence tests showed that, for the grid considered, and
over the range 1 < Re < 1000, the heat transfer results
were accurate for a Prandtl number of 0.7, At higher
Prandtl numbers, the accuracy of the results decreased
at higher Reynolds numbers (Re < 500). This is
because a very thin thermal boundary layer exists at
higher values of (Re- Pr), thus requiring more grid
points to be placed close to the cylinder surface in
order to obtain accurate results. In practice, the
amount of processor time required for the calculations
places restrictions on the maximum size of the compu-
tation grid that can be used.

The final computations were carried out for a grid
containing 56 x 31 nodal points. About 300-500
iterations were necessary to obtain converged sol-
utions for the velocity field, while the temperature
field required only 75-150 iterations. The processing
time required for the flow field computation ranged
between 120 and 200 min, on a NAS7000 mainframe
computer using an IBM OS/MVS operating system.
The solution of the energy equation required 36 min
of processor time. The results from the numerical
computations are presented in the next section.
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FIG. 4. Friction factor for finned and unfinned tube banks.

Table 1. Calculated values of friction factor and Nusselt number for the
unfinned inline array tube bank

B Re ! Pr Nu(l) Nu(?) Nu(3) Nu@d) Nu,
40 27 6584 200 5348 5531 5341 5524 5436
280 1823 1011 50 558 5657 5566 5636 5611
100 5968 5989 5957 5978 5973
200 6730 6737 6724 6732 6731
1500 7618 0310 07 5260 5438 5240 5418 5339
50 6929 6937 6923 6931 6930
100 8209 8212 8205 8208 8209
200 1079 1079 1079 1079  10.79
3500 1518 0182 07 5869 5929 5862 5922  5.896
50 8173 8176 8171 8174 8.174
100 1005 1005 1005 1005 10.05
200 1369 1369 1369 1369 13.69
14000 4868 007t 07 7077 7087 7075 7085 7.081
50 1051 1051 1051 1051  10.51
100 1364 1364 1364 1364 1364
200 1958 1958 1958 19.58  19.58
30,000 9377 0041 07 7728 7731 1727 1730 7729
SO 1186 1187 1186 1187 11.87
100 1583 1583 1583 1583 1583
200 2329 2329 2329 2329 2329

RESULTS AND DISCUSSIONS

Representative results for the test case (case 1)
shows good agreement with the experimental results
of Bergelin et al. [8,9]. Figure 3 shows a plot of the
friction factor, f, and the quantity [(Nu/(Re Pr'/3)] vs
the Reynolds number for the inline tube bank

described by the geometry parameters in equation
(15). Four different sets of data are plotted for the
quantity [(Nu/(RePr'’)], corresponding to Prandtl
numbers of 0.7, 5, 10 and 20. Also plotted are the
experimental results of Bergelin et al. [8,9], who
found that multiplying the quantity [(Nu/RePr'%)]
by (u./us)®'* accounted for the effects of Prandtl
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Table 2. Calculated values of friction factor and Nusselt number* for the
finned inline array tube bank

B Re f Pr Nu(l) Nu(2) Nu(3) Nu@d) Nu,
40 262 7003 200 3736 3920 3760 3943 3.840
280 17.86 1.053 0.7 2167 3471 2421 3878 2985
5.0 3.887 3953 3.887 3953 3920
10.0 4082 4101 4079 4.098 4.090
20.0 4479 4485 4477 4483 4481
1500 7695 0.304 0.7 3.593 3.744 3581 3732 3.662
50 4396 4401 4389 4394 4395
10.0 5.189 5191 5184 5186 5.188
20.0 6910 6910 6910 6910 6910
3500 1527  0.180 0.7 3810 3854 3797 3841 3.826
5.0 5083 5085 5080 5082 5.082
10.0 6.324 6324 6324 6324 6324
20.0 8.768 8.768 8768 8.768 8.768
14,000 4857 0.071 0.7 4430 4436 4428 4435 4432
5.0 6465 6465 6465 6465 6.465
10.0 8334 8334 8334 8334 8334
200 1195 1195 1195 1195 1195
30,000 9353  0.041 0.7 4822 4824 4821 4823 4823
50 7234 7234 7234 7234 7234
10.0 9.587 9.587 9.587 9.587 9.587
200 1411 1411 1411 1411 14.11
* Based on actual area of heat transfer.
100 .
" PRANTL NO.  UNFINNED FINNED
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F1G. 5. Average Nusselt numbers for finned and unfinned tube banks.

number, and temperature dependence of viscosity, on
their data. It is with this modified form that the
comparison in Fig. 3 is made. As can be seen from
the figure, the results for laminar flow agree very well
for Re up to 1000. This is surprising since transition
to turbulence is expected to occur at much lower
values of Re. These results support the conclusion
reached by Launder and Massey [3], who observed
that for Re < 1000, “the effects of turbulence (or of

some more ordered unsteadiness), if present, is not
important”.

It is reasonable to assume that the numerical
methodology can yield reasonable results for the case
of flow and heat transfer in finned tube banks. This
is because the presence of fins would tend to act
as ‘flow straighteners’ and would also damp out
turbulence and vortex shedding. It is interesting to
note from ref. [6] that the increase in heat transfer in
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FiG. 6. Streamline plots for finned and unfinned tube banks.

finned tube banks is proportional to the increase in
heat transfer area. It can be thus reasoned that finning,
at least in staggered tube banks, does not lead to an
increase in turbulence-related heat transfer.

The effect of finning, on the friction factor for the
case of the inline tube bank with the geometry
specified in equation (16), is seen in Fig. 4. This is a
plot of the friction factor vs the Reynolds number,
for the finned and unfinned tube banks. The calculated
results are also listed in Tables 1 and 2, for the
unfinned and finned case, respectively. Also tabulated
are the Nusselt number results obtained from equa-
tions (22)—(25), for different values of Prandtl numbers.
A comparison of the heat transfer rates for the finned
and unfinned tube banks is graphically presented in
Fig. 5. Here the average Nusselt number, Nu,, is
plotted against the Reynolds number, for different

values of Pr. The average Nusselt number is the
arithmetic mean of Nu(1), Nu(2), Nu(3) and Nu(4).
The closeness between the friction factor results for
the finned and unfinned tube banks [see Fig. 4],
suggest that the flow, in both cases, is similar. This is
clearly seen in Fig. 6, which shows the streamline
plots for the finned and unfinned cases at different
values of the parameter B. It is seen that the fins are
in the stagnation zones in the front and rear of each
tube, and thus effect the flow in these regions only.
The major part of the flow does not seem to feel the
effect of the fins being present. The heat transfer
results in Fig. 5 show that the Nusselt number
decreases as a result of finning. This is probably again
due to the fact that the fins are in the stagnation
regions, and thus the increase in heat transfer area
cannot be effectively used. Figure 7 shows a set of
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F1G. 7. Isotherm plots for finned and unfinned tube banks.

Table 3. Calculated values of Nusselt number* for the finned inline
array tube bank
B Re Pr Nu(l) Nu(2) Nu3) Nu@4) Nu,,
40 262 200 6.115 6415 6153 6454 6284
280 17.86 0.7 3547 5682 3962 6347 4885
50 6362 6471 6361 6470 6416
100 6.681 6712 6676 6707 6694
20.0 7.330 7340 7327 7337 7333
1500 76.95 0.7 5880 6128 5861 6108 5994
5.0 7.194 7202 7.183 7191 7.193
10.0 8492 8495 8485 8488 8490
200 1131 1631 1131 1131 113t
3500 1527 0.7 6236 6307 6215 6286 6.261
5.0 8319 8322 8314 8318 8318
100 1035 1035 1035 1035 1035
200 1435 1435 1435 1435 1435
14,000 4857 0.7 7.251  7.261 7247 7258 7254
50 1058 1058 1058 1058 1058
100 1364 1364 1364 1364 1364
200 1956 1956 1956 1956 19.56
30,000 9353 0.7 7.892 7895 7890 7.894 7.893
50 1184 1184 1184 1184 1184
100 1569 1569 1569 1569 1569
200 2309 2309 2309 2309 23.09

* Based on area of unfinned tube.

isotherm plots for the finned and unfinned tube banks
for a Prandtl number of 0.7, and at different values
of B. Again it is seen that the presence of the fins
changes the temperature distribution only in the
stagnation regions. Table 3 presents the calculated
values of the Nusselt number for the finned tube
bank, based on the heat transfer area of an unfinned

BMT 30:2~K

tube bank. A comparison of Tables 1 and 3 shows
that the heat transfer rate increases only for low
values of Prandtl number (Pr = 0.7). At higher values
of Pr there is very little change in the heat transfer
rate.

In summary, it appears that longitudinal finning,
in the case of inline tube banks, does not lead to any
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significant increase in actual heat transfer. This is
because the fins are in the midst of stagnation regions,

ure drop characteristics, Int. J. Heat Mass Transfer 28,
339-350 (1984).

and hence do not increase the heat transfer, despite - 5. V; Patankar, C. H. Liu and E. M. Sparrow, Fully
developed flow and heat transfer in ducts having stream-
the. fact that they present a larger.surface area over wise-periodic variation of cross-sectional area, J. Heat

which heat transfer may occur. This is in contrast to Transfer 99, 180-186 (1977).
the case of staggered tube banks [6], for which finning 8 ;)."l_’. Beggelin, G. fA Bré)Vgn,. I’t!.'L'. Hull and F. W.
substantially increase the h transfer. ullivan, Heat transfer and fluid friction during viscous
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CALCUL NUMERIQUE DE L’ECOULEMENT ET DU TRANSFERT THERMIQUE
DANS DES RANGEES DE TUBES AILETES OU NON

Résumé—Un schéma numérique 4 volume fini est utilisé pour prédire les caractéristiques d’écoulement et
de transfert thermique dans des bancs de tubes alignés. On étudie I'effet des ailettes longitudinales sur les
tubes. Les équations du mouvement et du transfert de chaleur sont numériquement résolues, avec I'hy-
pothese d’un écoulement périodique pleinement développé. La méthodologie numérique utilise la technique
de la frontiére échelonnée pour approcher la surface du tube. Les tubes sont maintenus 4 température
constante et les calculs sont effectués pour I'’écoulement laminaire et pour un grand domaine de nombre
de Reynolds et de Prandtl. Les résultats pour les tubes lisses sont comparés avec les données expérimentales
publiées. Les résultats numériques s’accordent bien avec les mesures. Pour le cas des tubes ailetés, les
résultats indiquent une diminution surprenante du transfert de chaleur et de faibles changements de la
perte de charge résultant de l'ailetage. La décroissance du transfert de chaleur est probablement due au
fait que les ailettes sont placées dans les régions d’arrét devant et derrifre les tubes et que ceci n’a pas 'effet
d’augmenter le transfert.

NUMERISCHE BERECHNUNG VON STROMUNG UND WARMEUBERGANG IN
BERIPPTEN UND UNBERIPPTEN ROHRBUNDELN

Zusammenfassung—Es wird ein numerisches Verfahren verwendet, um Stromung und Wirmeiibergang in
einem fluchtenden Rohrbiindel zu berechnen. Der EinfluB einer Langsberippung auf den Druckabfall und
den Wiarmeiibergang wird untersucht. Die maBgeblichen Gleichungen fiir Stromung und Wirmeiibergang
werden numerisch gel6st, wobei eine periodisch voll-entwickelte Strémung angenommen wird. Dabei wird
das numerische Verfahren der gestuften Berandung angewandt, um die Rohroberfliiche zu approximieren.
Die Rohre werden auf konstanter Temperatur gehalten. Die Berechnungen erfolgen fiir laminare Stromung
in einem weiten Bereich der Reynolds- und Prandtl-Zahl. Die Ergebnisse fiir unberippte Rohre werden mit
jungst veroffentlichten experimentellen Daten verglichen. Die numerischen Berechnungen stimmen gut mit
diesen Daten iiberein. Représentative Ergebnisse fiir berippte Rohre zeigen tliberraschenderweise eine
Verminderung des Wirmeiberganges und eine nur geringe Anderung des Druckabfalles als Folge der
Berippung. Das Abfallen der Wirmeiibergangs-K oeffizienten wird wahrscheinlich dadurch hervorgerufen,
daB die Rippen im vorderen und hinteren Staubereich abgebracht waren, wodurch sich keine Erhéhung
des Wirmeiibergangs-Koeffizienten ergeben kann.

YUCJEHHBIA PACYET TEYUEHHS U TEIVIOOBMEHA B OPEBPEHHBIX H
HEOPEBPEHHbBIX NMYYKAX TPVB

Amnoramms—C NOMOLIBIO YHCICHHOH CXEMbI KOHEYHOrO 06BEMa NpOBENEH PacyeT XapaKTepHCTHK
TEYEHUS KUIKOCTH M TEIUIONEPEHOCa B KOPHAOPHBIX Myykak Tpy6. MccnenoBaHo BAMAHHME NPOJOILHOIO
opebpeHus Tpy0 Ha nepenaj AaBjCHUA TEIonepeHoc. YHCNEHHO pelIeHbl OCHOBHBIC YPaBHEHHS ANs
MOTOKA XHAKOCTH M TEMJIONEPEHOCca B JOMYIEHHH NEPHONMYECKOrO, NMOJHOCTBIO PAa3BHTOTO TEYEHHS.
TIpu 4YUCTEHHOM pELIEHHH HCHOJb30BAJICA METOX CTYNEHYATOH TPAHHLBI IS alNpPOKCUMALHHU TIOBEPX-
HocTu Tpy6. Temnepatypa Tpy6 noanepkHBaiach MOCTOAHHOM, H PacyeThl BEIIOJHSJINCE AJIA JJAMHHAP-
HOTO peXHMa TeueHus B GonblOM nnama3oHe 3HaueHmit yncen Pefinonpaca u Ilpanaras. Ipoeeaseno
CpaBHEHHE DPe3y/IbTATOB PacyeTOB AJis HeopeOpeHHOM TPYObl paHee OnyOIMKOBAHHBLIMH KCIIEPUMEHTA-
JILHBIMH JAHHBIMM M OTMEYEHO MX Xopoluee cobmaieHHe. COBEpIIEHHO HEOXKHMOAHHBIM PE3YILTATOM
aHanM3a [JAHHBIX, TOJIYYEHHBIX ANA OpeOpeHHBIX TPYD, OKa3aloch CHHXEHHE IUIOTHOCTH TEMIOBOrO
NOTOKa M HeGOJIbIIOE H3MEHEHHE NIepenaia JaBJIeHHs 3a cueT opeGpenns. BeposTHo, yMeHbIlIeHE TIIOT-
HOCTH TEIUIOBOTO NOTOKA BbI3BAHO MECTOTION0XKEHHEM pebep B 30HAX TOPMOXKEHHS MOTOKA HA NepeiHeEi
M 3a/IHel CTEHKAK TPYD, B pe3ysibTaTe 4ero He MPOUCXOIUT YBEJIHYCHHS B MHTEHCHBHOCTH TemnoobMeHa.



